Efficient Transmission of Subthreshold Signals in Complex Networks of Spiking Neurons
نویسندگان
چکیده
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances--that naturally balances the network with excitatory and inhibitory synapses--and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.
منابع مشابه
Subthreshold membrane responses underlying sparse spiking to natural vocal signals in auditory cortex.
Natural acoustic communication signals, such as speech, are typically high-dimensional with a wide range of co-varying spectro-temporal features at multiple timescales. The synaptic and network mechanisms for encoding these complex signals are largely unknown. We are investigating these mechanisms in high-level sensory regions of the songbird auditory forebrain, where single neurons show sparse...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملDeterministic neural dynamics transmitted through neural networks
Precise spatiotemporal sequences of neuronal discharges (i.e., intervals between epochs repeating more often than expected by chance), have been observed in a large set of experimental electrophysiological recordings. Sensitivity to temporal information, by itself, does not demonstrate that dynamics embedded in spike trains can be transmitted through a neural network. This study analyzes how sy...
متن کاملStochastic resonance in noisy spiking retinal and sensory neuron models
Two new theorems show that small amounts of additive white noise can improve the bit count or mutual information of several popular models of spiking retinal neurons and spiking sensory neurons. The first theorem gives necessary and sufficient conditions for this noise benefit or stochastic resonance (SR) effect for subthreshold signals in a standard family of Poisson spiking models of retinal ...
متن کاملResonate-and-fire neurons
We suggest a simple spiking model-resonate-and-fire neuron, which is similar to the integrate-and-fire neuron except that the state variable is complex. The model provides geometric illustrations to many interesting phenomena occurring in biological neurons having subthreshold damped oscillations of membrane potential. For example, such neurons prefer a certain resonant frequency of the input t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015